Learn from Unlabeled Videos for Near-duplicate Video Retrieval

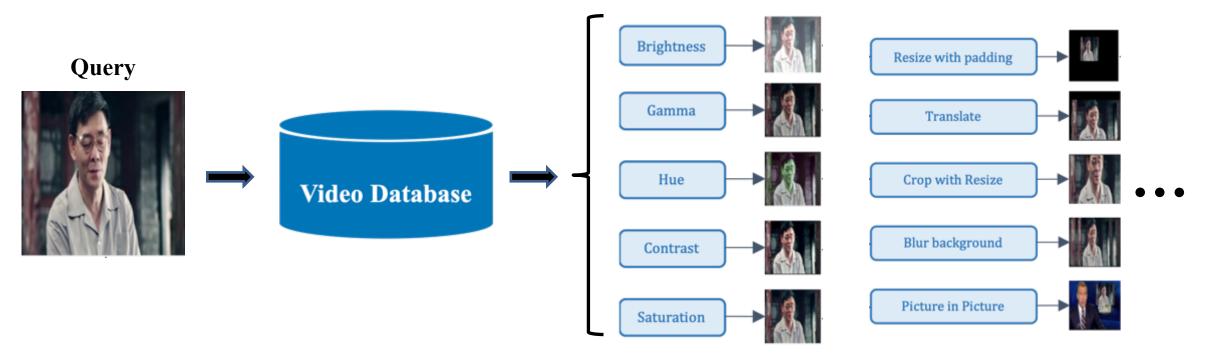
Xiangteng He^{#1}, Yulin Pan^{#2}, Mingqian Tang², Yiliang Lv² and Yuxin Peng^{*1}

¹ Wangxuan Institute of Computer Technology, Peking University ² Alibaba Group

{hexiangteng, pengyuxin}@pku.edu.cn

Background

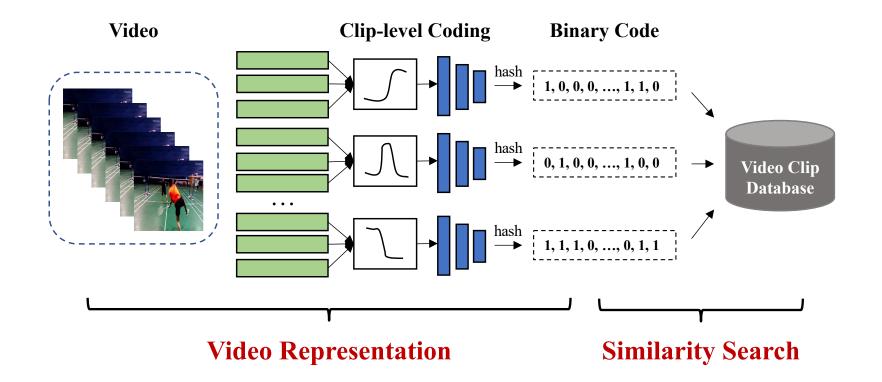
• Near-Duplicate Video Retrieval (NDVR)



• Application Scenarios

Background

- To design an efficient and effective near-duplicate video retrieval system
 - Video Representation
 - Similarity Search



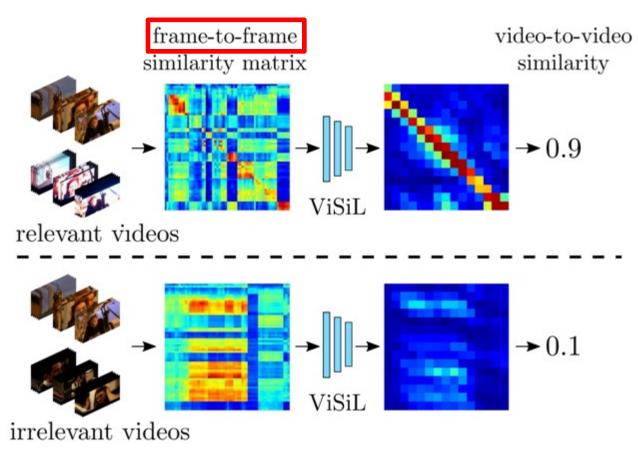
Related Work: Video Representation

• A large amount of labeled videos are needed for the learning process.

Jiang et al., VCDB: a large-scale database for partial copy detection in videos, ECCV 2014.

Related Work: Similarity Search

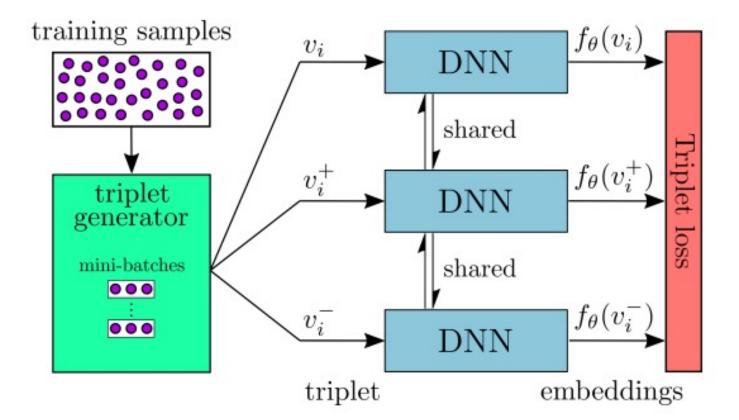
- Based on frame-level features
 - storage expensive and computationally expensive



Kordopatis-Zilos et al., ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning, ICCV 2019.

Related Work: Similarity Search

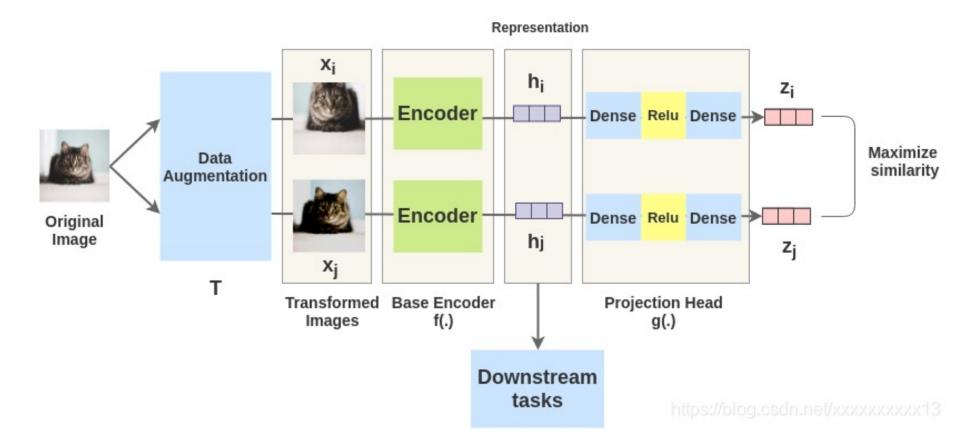
- Based on video-level features
 - insufficient to capture crucial details of individual videos



Kordopatis-Zilos et al., Near-Duplicate Video Retrieval with Deep Metric Learning, ICCVW 2017.

Motivation

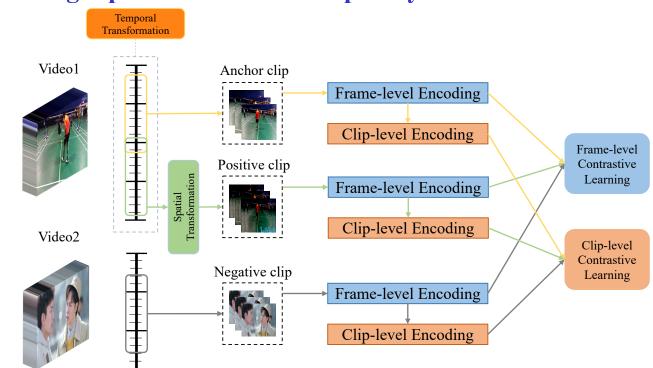
- Contrastive learning
 - learn visual representation from large amounts of unlabeled data

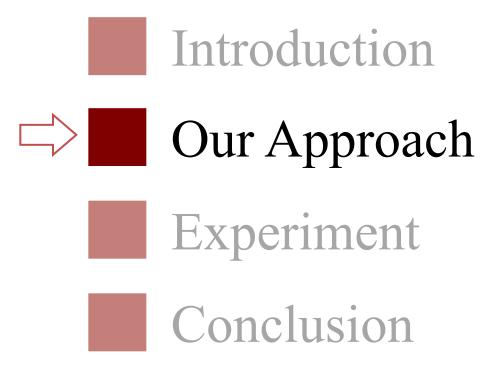


Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020.

Our Contribution

- We propose a video representation learning (VRL) approach
 - **Frame-level encoding** is proposed to learn the frame-level feature with the pairs of the video frames and their transformations, thus **avoiding the high cost in manual annotation**
 - Clip-level encoding is proposed to aggregate frame-level features into clip-level, leading to significant reduction in both storage space and search complexity



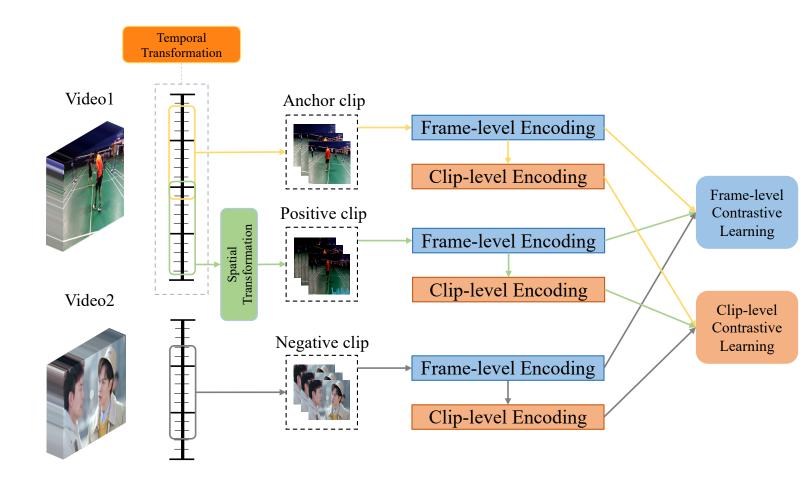


Our Approach

- Frame-level Encoding
 - Self-generation of Training Data
 - Spatial Structure Encoding

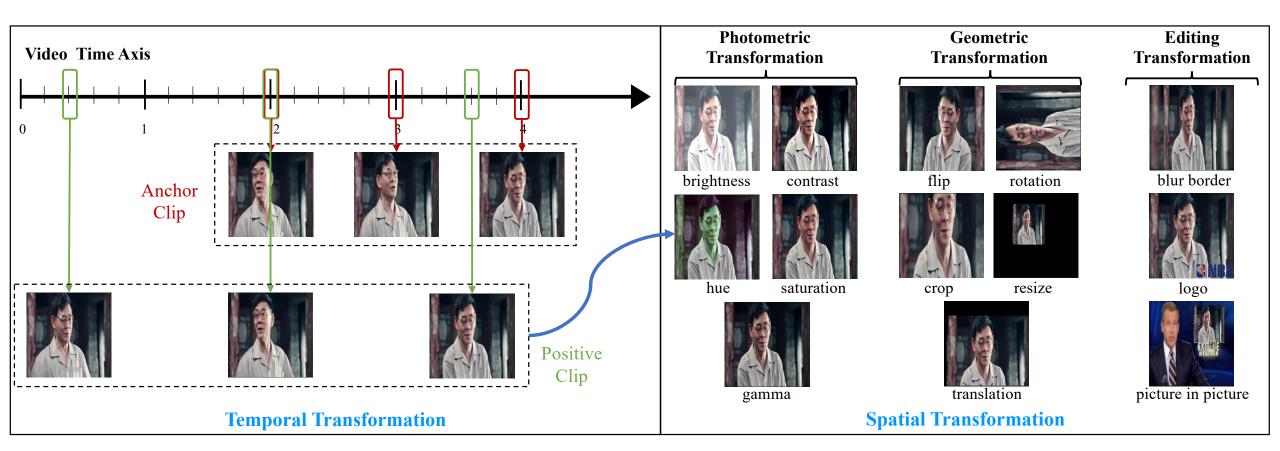
- Clip-level Encoding
 - Temporal Structure Encoding
 - Masked Frame Modeling

• Video Similarity Calculation



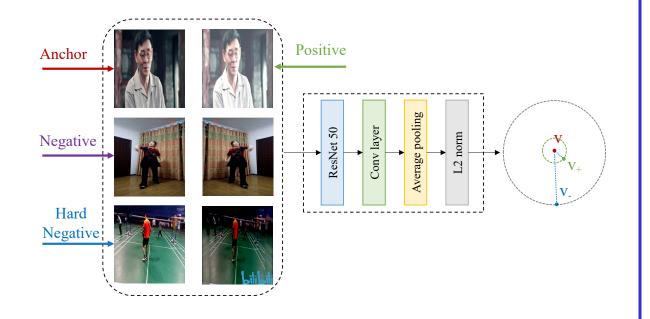
Frame-level Encoding

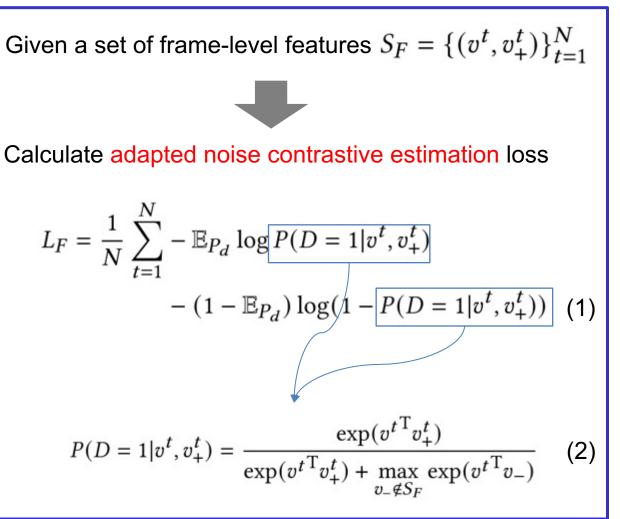
- Self-generation of Training Data
 - Temporal Transformation
 - Spatial Transformation



Frame-level Encoding

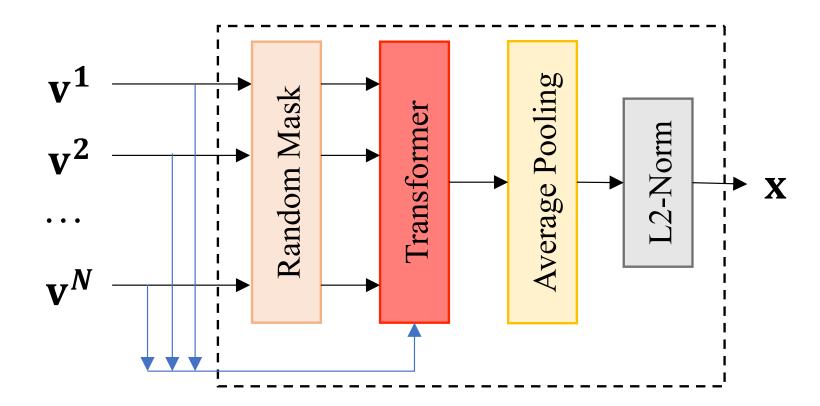
- Spatial Structure Encoding
 - Backbone: ResNet-50
 - Loss Function: adapted NCE loss





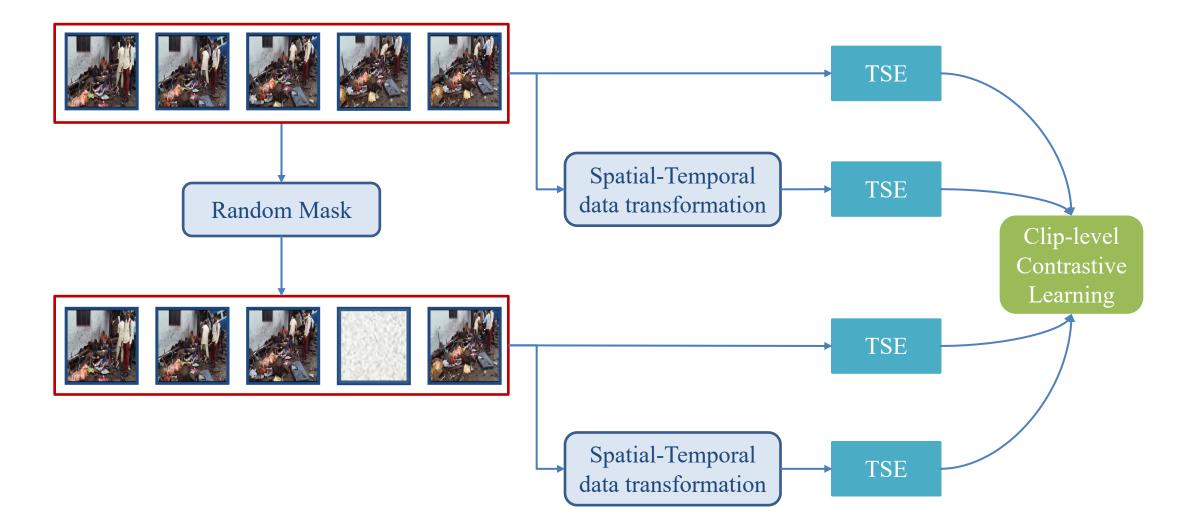
Clip-level Encoding

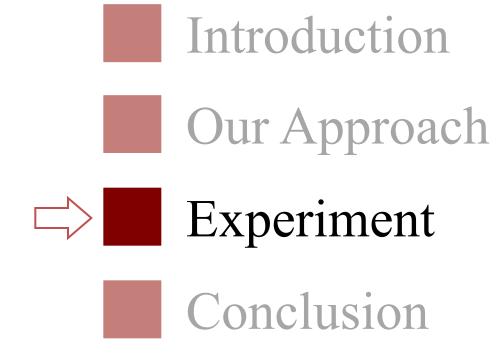
- Clip-level Set Transformer Network
 - Temporal Structure Encoding
 - Masked Frame Modeling



Clip-level Encoding

• Masked Frame Modeling



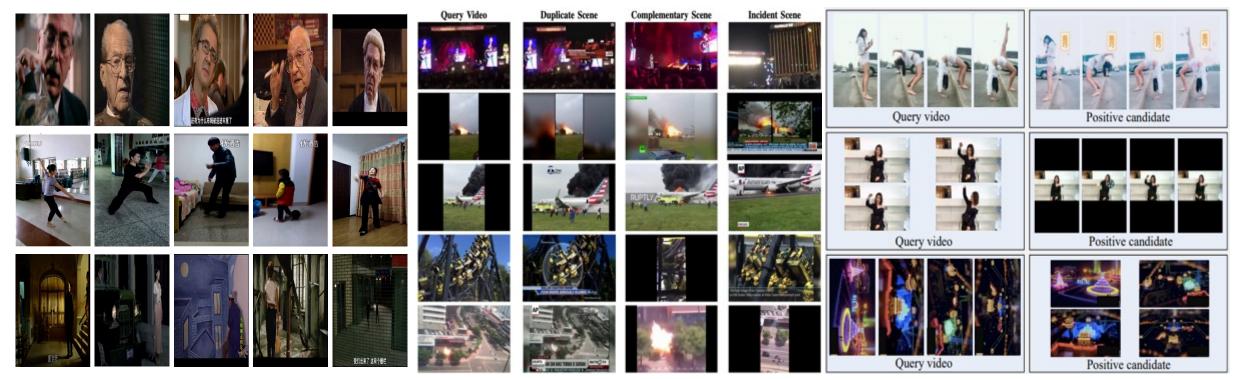


Dataset

- Self-Transformation
 - 3,000 hours' videos
 - Unlabeled data

- FIVR-200K
 - 225,960 videos
 - 100 queries

- SVD
 - 562,013 short videos
 - 1,206 queries



• On FIVR-200K dataset

- Compare with frame-level retrieval approach, our VRL approach outperforms all state-of-the-art methods except VisiL

Feature	Methods	Feature Dim/#bits	DSVR	CSVR	ISVR
	HC[36]	-	0.265	0.247	0.193
Video-level	DML[7]	500D	0.398	0.378	0.309
	$TCA_c[9]$	2048D	0.570	0.553	0.473
	CNN-L[10]	4096D	0.710	0.675	0.572
Frame-level	PPT[11]	4096D	0.775	0.740	0.632
Frame-level	TN[12]	-	0.724	0.699	0.589
	$TCA_f[9]$	2048D	0.877	0.830	0.703
	VisiL[8]	9x3840D	0.892	0.841	0.702
	\mathbf{VRL}_{f}	512 bits	0.900	0.858	0.709
Clip-level	VRL	512 bits	0.876	0.835	0.686

• On FIVR-200K dataset

- In frame-level features, our VRL*f* approach can achieve better retrieval performance than VisiL without any complex calculation

Feature	Methods	Feature Dim/#bits	DSVR	CSVR	ISVR
	HC[36]		0.265	0.247	0.193
Video-level	DML[7]	500D	0.398	0.378	0.309
	$TCA_c[9]$	2048D	0.570	0.553	0.473
	CNN-L[10]	4096D	0.710	0.675	0.572
Frame-level	PPT[11]	4096D	0.775	0.740	0.632
Frame-level	TN[12]	-	0.724	0.699	0.589
	$TCA_f[9]$	2048D	0.877	0.830	0.703
	VisiL[8]	9x3840D	0.892	0.841	0.702
	VRL _f	512 bits	0.900	0.858	0.709
Clip-level	VRL	512 bits	0.876	0.835	0.686

• On FIVR-200K dataset

Our VRL approach achieves significant improvements by 30.6%, 28.2%, 21.3% mAPs on the DSVR, CSVR and ISVR tasks

Feature	Methods	Feature Dim/#bits	DSVR	CSVR	ISVR
	HC[36]		0.265	0.247	0.193
Video-level	DML[7]	500D	0.398	0.378	0.309
	$TCA_c[9]$	2048D	0.570	0.553	0.473
	CNN-L[10]	4096D	0.710	0.675	0.572
Frame-level	PPT[11]	4096D	0.775	0.740	0.632
Frame-level	TN[12]	-	0.724	0.699	0.589
	$TCA_f[9]$	2048D	0.877	0.830	0.703
	VisiL[8]	9x3840D	0.892	0.841	0.702
	\mathbf{VRL}_{f}	512 bits	0.900	0.858	0.709
Clip-level	VRL	512 bits	0.876	0.835	0.686

- On SVD dataset
 - Our VRL approach achieves best performance compared with both frame-level and video-level based methods

Feature	Methods	Feature Dim/#bits	Top-100 mAP
Video-level	DML[7]	500D	0.813
	CNN-L[10]	4096D	0.610
Frame-level	CNN-V[10]	4096D	0.251
	\mathbf{VRL}_{f}	512 bits	0.871
Clip-level	VRL	512 bits	0.860

Effectiveness of Reducing Storage and Search Cost

- On SVD dataset
 - The storage of the frame-level features cost 1720.32 MB, while clip-level features only cost 366.98 MB, reducing the storage cost by 78.7%
 - Our VRL approach increases the retrieval speed by ~ 25times

Feature	Storage Space	Search Complexity
Frame-level	1720.32 MB	$O(M \times N)$
Clip-level	366.98 MB	$\sim \frac{1}{25}O(M \times N)$

Exploration of Flexible Retrieval Manners

- On SVD dataset
 - Provide more flexible retrieval manners, i.e. clip-to-clip retrieval and frame-to-clip retrieval
 - Use more fine-grained features (i.e. frame-level) can achieve better retrieval performance, which further verifies the effectiveness of clip-level encoding with masked frame modeling

Query	Database	Top-100 mAP
Clip-level	Clip-level	0.860
Frame-level	Clip-level	0.871

Ablation Study

• Self-generation of Training Data

 VRL_f with all the three types of transformations achieves the best performance

Masked Frame Modeling

 Clip-level encoding with masked frame modeling improves the discrimination and robustness of the learned clip-level feature, and achieves better performance

Methods	Transformations		DSVR	CSVR	ISVR	
Methous	PT GT ET DSVI	DSVK	COVR	ISVI		
VRL _f	\checkmark	\checkmark	\checkmark	0.900	0.858	0.709
A	\checkmark	\checkmark		0.868	0.818	0.673
В	\checkmark		\checkmark	0.881	0.825	0.662
С		\checkmark	\checkmark	0.868	0.815	0.649

Methods	SVD	FIVR-200K				
Methous	340	DSVR	DSVR CSVR ISV			
CE	0.854	0.870	0.834	0.687		
CE w/ MFM	0.860	0.876	0.835	0.686		

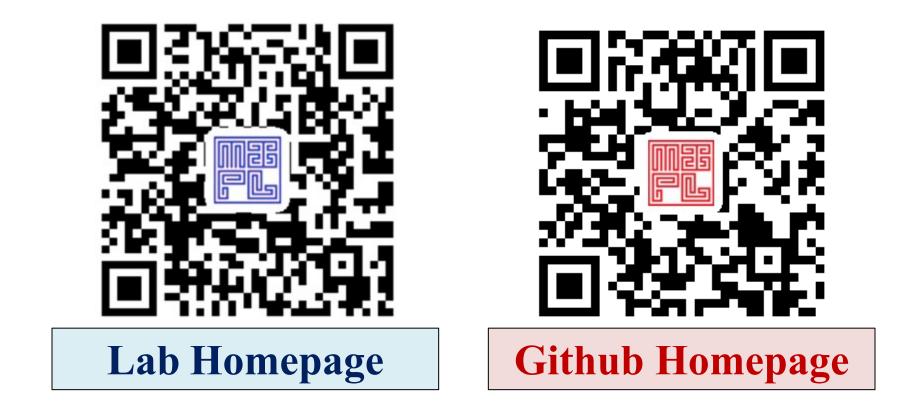
Conclusion

• We propose the VRL approach to encode the video in clip-level representation with contrastive learning to reduce the expensive cost of manual annotation, storage space and similarity search

• Frame-level encoding is to learn the discrimination and robustness of the learned feature with self-generation of training data

• Clip-level encoding is to reduce the redundancy of the frames in a clip, as well as make the model frame permutation and missing invariant, and support more flexible retrieval manners

Contact



Multimedia Information Processing Lab (MIPL) http://www.wict.pku.edu.cn/mipl/