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• To design an efficient and effective near-duplicate video retrieval system
⁃ Video Representation

⁃ Similarity Search
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Related Work: Video Representation

Jiang et al., VCDB: a large-scale database for partial copy detection in videos, ECCV 2014.

• A large amount of labeled videos are needed for the learning process.



• Based on frame-level features
⁃ storage expensive and computationally expensive
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Related Work: Similarity Search

Kordopatis-Zilos et al., ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning, ICCV 2019.



• Based on video-level features
⁃ insufficient to capture crucial details of individual videos
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Related Work: Similarity Search

Kordopatis-Zilos et al., Near-Duplicate Video Retrieval with Deep Metric Learning, ICCVW 2017.



• Contrastive learning
⁃ learn visual representation from large amounts of unlabeled data
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Motivation

Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020.
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Our Contribution

• We propose a video representation learning (VRL) approach
⁃ Frame-level encoding is proposed to learn the frame-level feature with the pairs of the video frames

and their transformations, thus avoiding the high cost in manual annotation

⁃ Clip-level encoding is proposed to aggregate frame-level features into clip-level, leading to significant

reduction in both storage space and search complexity
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Our Approach

• Frame-level Encoding
⁃ Self-generation of Training Data

⁃ Spatial Structure Encoding

• Clip-level Encoding
⁃ Temporal Structure Encoding

⁃ Masked Frame Modeling

• Video Similarity Calculation
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Frame-level Encoding

• Self-generation of Training Data
⁃ Temporal Transformation

⁃ Spatial Transformation
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Frame-level Encoding

• Spatial Structure Encoding
⁃ Backbone: ResNet-50

⁃ Loss Function: adapted NCE loss
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Clip-level Encoding
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• Clip-level Set Transformer Network
⁃ Temporal Structure Encoding

⁃ Masked Frame Modeling
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Clip-level Encoding

• Masked Frame Modeling
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Dataset

• Self-Transformation
⁃ 3,000 hours’ videos

⁃ Unlabeled data

• FIVR-200K
⁃ 225,960 videos

⁃ 100 queries

• SVD
⁃ 562,013 short videos

⁃ 1,206 queries
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Comparisons with State-of-the-art Methods

• On FIVR-200K dataset
⁃ Compare with frame-level retrieval approach, our VRL approach outperforms all state-of-the-art

methods except VisiL
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Comparisons with State-of-the-art Methods

• On FIVR-200K dataset
⁃ In frame-level features, our VRL𝑓 approach can achieve better retrieval performance than VisiL without

any complex calculation
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Comparisons with State-of-the-art Methods

• On FIVR-200K dataset
⁃ Our VRL approach achieves significant improvements by 30.6%, 28.2%, 21.3% mAPs on the DSVR,

CSVR and ISVR tasks
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Comparisons with State-of-the-art Methods

• On SVD dataset
⁃ Our VRL approach achieves best performance compared with both frame-level and video-level based

methods



22

Effectiveness of Reducing Storage and Search Cost

• On SVD dataset

⁃ The storage of the frame-level features cost 1720.32 MB, while clip-level features only cost 366.98 MB,

reducing the storage cost by 78.7%

⁃ Our VRL approach increases the retrieval speed by ∼ 25times
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Exploration of Flexible Retrieval Manners

• On SVD dataset

⁃ Provide more flexible retrieval manners, i.e. clip-to-clip retrieval and frame-to-clip retrieval

⁃ Use more fine-grained features (i.e. frame-level) can achieve better retrieval performance, which further

verifies the effectiveness of clip-level encoding with masked frame modeling
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Ablation Study

• Self-generation of Training Data
⁃ VRLf with all the three types of

transformations achieves the best

performance

• Masked Frame Modeling

⁃ Clip-level encoding with masked frame

modeling improves the discrimination

and robustness of the learned clip-level

feature, and achieves better performance
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Conclusion

• We propose the VRL approach to encode the video in clip-level representation with

contrastive learning to reduce the expensive cost of manual annotation, storage space

and similarity search

• Frame-level encoding is to learn the discrimination and robustness of the learned

feature with self-generation of training data

• Clip-level encoding is to reduce the redundancy of the frames in a clip, as well as

make the model frame permutation and missing invariant, and support more flexible

retrieval manners
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